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Abstract

The concurrent electro-thermal design of three-dimensional integrated circuits characterized by submicron geo-

metric features requires thermal modeling that can comprehend geometric complexities, multiple materials, tempera-

ture-dependent material properties, and multiple spatial and temporal scales. The computational time required for a

full-scale transient simulation with traditional discretization schemes far exceeds what is practical for concurrent design

practices. A new computational paradigm for a transient, multiple-grid, solution technique has been developed, which

adaptively handles the wide ranges of spatial and temporal scales associated with the thermal modeling of high-per-

formance integrated circuits (ICs). As the grid is automatically refined over selected regions of the computational

domain, the solution becomes invariant to further reductions in grid spacing and time step size. The use of this self-

adaptive approach reduces the computational requirements for transient thermal modeling by over two orders of

magnitude, making it possible for the first time to simultaneously perform both the electrical and thermal analysis and

design of real ICs.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Integrated circuits (ICs) are complicated three-

dimensional devices constructed of multiple layers of

materials whose dimensions vary widely and whose

thermal properties can have strong temperature depen-

dence. These layers are fabricated by deposition and

selective removal of various materials. The dimensions

of an electrically active region (e.g., gate) are typically in

fractions of a micrometer while the thickness of circuit

topology features (e.g., lines, metalization, pads) can

vary from a few tens to a few thousands of angstroms.
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These features are small compared to the overall

dimensions of the IC, which are typically measured in

millimeters. The thermal characterization of such de-

vices thus requires that the method used be capable of

handling these complexities and temperature depen-

dencies. Furthermore, the simulation tool must also be

able to handle the large variations in both spatial and

temporal scales normally associated with ICs. Fig. 1

illustrates typical packaged microwave modules that

encompass the microwave and digital circuitry required

for transmission (color version of figures may be viewed

at http://engr.smu.edu/setsl/ijhmt). The top left portion

of Fig. 1(a) shows the gallium arsenide (GaAs) and sil-

icon IC devices along with various layers of die attach-

ment and radio frequency (RF) circuitry. The top right

portion illustrates a top view of a GaAs monolithic

microwave integrated circuit (MMIC), while the bottom

right portion details a single field effect transistor (FET)
ed.

http://engr.smu.edu/setsl/ijhmt
mail to: jsw@raytheon.com


Nomenclature

Cp heat capacity

CT total thermal capacitance of a cell

G conductance between two adjacent nodes

k thermal conductivity

Lx, Ly overall problem dimensions

Qx, Qy heat source dimensions

_s heat source

S total heat input within a cell

t time

Greek symbols

dxx, dyy , dzz second-order spatial operators

Dt time increment

Dx, Dy, Dz spatial increments

q material density

Superscripts

�; �� intermediate solution levels

n, nþ 1 current and new time levels, respectively
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on the MMIC. The FETs contain several similar chan-

nels, each of which contains contacts for the gate,

source, and drain. The lower left portion of Fig. 1(a)

shows a tunneling electron microscope picture detailing

the gate metallization in a cross-sectional view. The

spatial scale range in transitioning from modules to

detailed gate metal is about five orders of magnitude.

This spatial scale range may be even more dramatic

when consideration is given to antennas made up of

thousands of these modules. Antenna dimensions mea-

sured in meters are not uncommon. A similar issue arises

in the consideration of the appropriate temporal scales.

A module and its associated thermal boundary condi-

tions are typically described in units of minutes or sec-

onds, while temperature changes in the gate region of a

GaAs IC must be described in time scales of fractions of

a microsecond.

Microwave devices are often operated in a pulsed

mode, where the device alternates between on- and off-

states. The duration of the on-state typically ranges from

approximately 1 ls to 1 ms. The small physical dimen-
sions of the device channel (or junction) allow its tem-

perature to vary significantly during this time period.

Circuit designers need temperature predictions for both

steady-state and transient conditions because many of

the design parameters are sensitive to temperature. For

example, device efficiency, gain, and power output for an

amplifier all decrease with temperature [1]. The need for

temperature predictions has resulted in the development

of a number of methods, some of which are described in

the next section on prior work. The development trend

appears to have been driven by solution methodologies

rather than by the physics of the real problem, as it

should be. The distinguishing feature of the method

described in this paper is that, unlike the approximate

methods in previous works, it was developed with the

real problem in mind.

Fig. 2 illustrates the tradeoffs associated with the use

of numerical methods for design efforts. The y-axis
represents the time requirement for model generation

and the solution of the resulting model. The x-axis rep-
resents increasing complexity. Closed form solutions are

very quick to set up and solve, but the answers are of

limited use. Adding more details to the problem pro-

vides answers that are now useful for design studies, but

at a high cost of user effort and computer time. The

objective of the development effort described in this

paper was to move both the model generation time and

the solution time into the shaded region in the lower

right-hand corner of Fig. 2. This was accomplished by

designing a solution method that addresses the full

problem as opposed to developing a method and then

finding what class of problems it could solve.
2. Prior work

The need for temperature predictions by IC designers

has resulted in several estimation methods ranging from

analytical approximations to full three-dimensional

numerical simulations. Analytical approximations [2,3]

are restricted to simple geometries, but offer moderately

fast simulation times. The transient capability of such

methods is also extremely limited [4]. An additional

limitation is the requirement for constant thermal

properties (except for applying a Kirchhoff transform

with constant temperature base of the semiconductor).

Solutions to more realistic problems may be obtained by

numerical modeling, which is supported by several

methodologies. These include finite difference, finite

element, and boundary element methods, which are

available in the form of commercial software packages

[5,6]. However, the computational time requirements of

detailed simulations prohibit concurrent engineering

design. These packages also must rely heavily on the

experience of the analyst since three-dimensional grid

convergence studies are both difficult to perform and

totally unreasonable from the standpoint of solution

time. Also, the addition of temperature-dependent

properties requires the use of an iterative procedure.

Dawson [7] gives a more extensive list of approximation

methods for steady-state problems, but does not list any



Fig. 1. Typical MMICs: (a) range of spatial scales, (b) top view, (c) thermal profile (see color version at http://engr.smu.edu/setsl/

ijhmt).
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transient solution methods. Because of the excessive

time required for modeling transient three-dimensional

problems, the majority of the applicable published lit-

erature has been limited to either two-dimensional

problems with complex geometry, or simplified three-

dimensional problems. In addition, the published tran-

sient analyses have been limited to problems in which

the thermal material properties are constant.

Problems such as the ones mentioned above include

geometrical complexity and significant variations in

spatial scales. The spatial complexity can be addressed

by the use of unstructured grids, which allow for higher

mesh resolution in regions where the geometry is com-
plex as well as in regions where strong solution gradients

are anticipated. The main disadvantage to unstructured

grids, however, is the significant computational effort

required to solve the resulting matrix, especially in

transient simulations.

When considering computational efficiency, the

preferable approach is to solve the problem with a

manageable grid density and then ascertain the portions

of the domain requiring additional refinement. This

approach was successfully introduced by Berger [8] and

Berger and Oliger [9] for the solution of hyperbolic

problems, and later extended to problems in fluid

dynamics by van der Wijingaart [10]. Extensions to these
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Fig. 2. Relevant simulations must comprehend temperature-

dependent properties and complex geometries.
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earlier works have continued to appear in the literature,

but have been limited to either two-dimensional do-

mains [11] or have limited the adaptive meshing to space

only [12]. More recent representative works include

those of Cook [13] who demonstrated that the mesh

adaptation errors associated with the boundaries are

small and localized. Roma et al. [14] applied the adap-

tive implementation to immersed boundaries, but did

not adaptively refine the time scales. Powell et al. [15]

demonstrated the adaptive approach on magnetohy-

drodynamics problems with a two-step scheme in time

and used fixed threshold error criteria to guide their grid

adaptation.

Extending the self-adaptive concepts to the solution

of transient three-dimensional problems whose spatial

and temporal scales vary over many orders of magnitude

is the subject of this work. The novel technique pre-

sented herein successfully reduces the computational

time requirements to the point that concurrent electro-

thermal design becomes feasible for the first time.
3. Motivating example problem

Consider the top surface view of a GaAs power

amplifier MMIC illustrated in Fig. 1(b). This device

contains two FETs. Each FET contains an array of gate

fingers with the sum of the gate fingers comprising the

FET junction. Source and drain connections are located

on either side of the gate fingers. The gate connection is

made with a metal trace directly above the active region

and silicon nitride passivation exists in the region be-

tween the gate and source (or drain) pads. The device is

mounted to a copper–molybdenum heat sink with gold–

tin (80/20) solder. Heat generation occurs in the semi-

conductor layer of the GaAs and must dissipate by
conduction down through the GaAs, die attach, and

heat sink. The surface metal and passivation layers

provide some heat spreading and must be included for

an accurate model. The physical geometry is inherently

three-dimensional with four to five orders of magnitude

changes in spatial scales and the added complexity of

temperature-dependent thermal conductivity.

The temperature field for one of the FETs was ob-

tained by the use of an electrical network analogy

solution method [16] that involved a biased meshing

scheme to concentrate the mesh density around one of

the device fingers anticipated to be the hottest during

operation. Initial model sizes were in the range of 80,000

nodes and over 140,000 resistors, but after expending

considerable effort to minimize the number of nodes

without changing the results (i.e., testing for grid con-

vergence), the model comprised about 32,000 nodes and

87,000 resistors. The grid generation time required

about two days of effort on the part of an experienced

analyst, which in and of itself impedes prototyping.

Fig. 1(c) shows a contour plot of the predicted stea-

dy-state temperature field on the top surface. While a

steady-state solution required 32 min of CPU time (Sun

275 MHz Sparc Ultra), transient solutions require

excessive computational time. The small grid spacing

required to resolve the FET channels results in an

excessively small time step if an explicit time-marching

method is to be used. Implicit methods relax the stability

requirement, but the nonlinear thermal conductivity

requires continual recalculation of the resistor matrix.

An implicit transient solution was obtained for one

period of a pulsed operating scenario with a variable

time step size selection routine. However, the time re-

quired to obtain this solution was well over 8400 min of

CPU time (Sun 275 MHz Sparc Ultra). Normally, a

simulation spanning several pulses is required in order to

ensure that a representative solution has been obtained.

In addition, a grid convergence in time is also necessary

to ensure temporal accuracy. As a result, even though

the network analogy method is efficient compared to

FEA tools, the solution time requirements prohibit any

interactive design process.
4. Motivation for a new paradigm

A new solution technique has been developed with

the primary goal of decreasing the solution time as well

as alleviating the effort required of an analyst in both

model generation and grid convergence decisions. The

new solution approach has two distinguishing features

that make it novel. The first feature is the ability of the

method to handle problem geometries that are charac-

terized by multiple materials of arbitrary sizes and

locations. Any attempt to try to resolve the smallest

geometric features with a single computational mesh will
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result in a mesh density that is prohibitively large,

especially in three spatial dimensions. An additional

drawback is that the geometric complexity, and not the

temperature gradients, would dictate the mesh density.

The second distinguishing feature is that the new

solution technique uses multiple grids in time, which

allows the use of different time step criteria for each

subregion. The time step selection is chosen to be com-

mensurate with the local physics, and in doing so, avoids

expending computational effort on trying to resolve in

time what cannot yet be resolved in space. Indeed,

solutions in coarser regions serve only to establish time-

dependent boundary conditions for the (more refined)

subregions. Since the spatial resolution is low in coarser

regions, there is no advantage to the use of high tem-

poral resolutions there. Consequently, larger time steps

can be used in the coarser domains, resulting in signifi-

cant savings in computational effort. The computational

time for transient problems is further reduced by the

use of a locally one-dimensional (or factored-implicit)

scheme. The solution method for rapidly solving the

transient portion of the problem is the subject of a

United States Patent [17].
Node common to both grids

Node with two neighboring common nodes

Node with common nodes at corners

Boundary of Region with
Unacceptable Error for Nest #1

New Nodes on
Nest Boundary

Material A

Material B

(b)

Fig. 3. Multiple materials and nests: (a) geometry and initial

mesh, (b) nest boundary nodes over three-material problem.
5. Governing equations, typical geometries, and boundary

conditions

The Fourier heat equation that describes the transient

thermal behavior of microwave integrated circuits is

rðkrT Þ þ _s ¼ qCp
oT
ot

ð1Þ

The material properties and the heat source ð_sÞ are
functions of both space and temperature. The source

term is also a function of time. While the heat equation

is very well known, the new concepts introduced in this

work relate to the application of this equation to

problems with large variations in spatial and temporal

scales, multiple materials, and temperature-dependent

properties. A full transient simulation of a realistic IC is

impractical with conventional techniques.

A schematic representation of the geometry of a

typical cross-section through an IC assembly is shown in

Fig. 3(a) (the uniformly spaced nodes shown will be

addressed below). As depicted, the second substrate is

mounted to the heat sink, and the problem may be de-

scribed as a series of stacked materials. A typical

boundary condition for this type of problem is a known

isothermal surface at some level below the GaAs (i.e., at

the heat sink). Because of the small size of the heat

sources, the temperature field near the top surface

exhibits high gradients. An adiabatic boundary condi-

tion is specified for all other exposed surfaces since for

these types of problems, radiation and convection effects

are negligible when compared with conduction.
6. Methodology

The modeling approach developed in this work is

based on a finite volume approach where the tempera-

ture field is obtained at discrete locations. Approxima-

tions representing the spatial derivatives may be derived

from either a control volume (CV) or a Taylor-series

expansion approach. Both approaches have advantages

and disadvantages with respect to the derivation and

solution of the discretized equations.

A discretization resulting from a Taylor-series

expansion (i.e., finite difference) lends itself naturally to
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the use of computationally efficient, factored solvers in

multi-dimensional problems. This feature is highly

desirable for computational efficiency, especially in

transient problems where the system of equations must

be solved repeatedly to advance the solution. However,

the Taylor-series approach is not well suited for han-

dling multiple materials. Also, nodes located on or near

physical boundaries require special treatment.

The CV approach, on the other hand, is more closely

tied to the physics of these types of problems. As such,

the treatment of multiple materials between computa-

tional nodes can be handled in a natural and straight-

forward fashion. The CV approach also provides more

flexibility when dealing with computational nodes that

are not aligned with physical boundaries. However, the

correct application of a factored (or locally one-dimen-

sional) approach in the context of a control volume

discretization is not obvious. Consequently, the imple-

mentation of a factored-implicit approach along with a

control volume discretization was one of the important

accomplishments of the current development. The

solution methodology involves two steps, namely the

generation of multiple domains (and their associated

grids), and the solution of the physics in each resulting

grid.

6.1. Subdividing the computational domain

Since the physical dimensions of the various materi-

als used in high-performance analog electronic devices

vary greatly (ls to cm), a uniform mesh that resolves all
of the details in three dimensions would result in an

excessive number of nodes. A common method for

dealing with scale variations is to skew (or bias) the

mesh in order to concentrate more nodes in areas where

a higher resolution level is required. The shortcoming of

using a biased-mesh approach to resolve the geometry is

that the problem geometry, and not the temperature

gradients (or physics), will end up dictating the meshing.

The meshing strategy used in the development of the

current technique was designed to ensure that the

method is (i) automatic and adaptive, (ii) independent of

user expertise, and (iii) independent of materials,

geometry features, and potential locations of sources.

An additional objective in designing a meshing ap-

proach was to eliminate as much ‘‘engineering judg-

ment’’ as possible in deciding how much or how little of

the problem geometry should be considered. The de-

scribed approach allows the user to include the difficult

problem geometry associated with the top surface fea-

tures of an IC over an area larger than would be

anticipated to influence the zone(s) of interest, and then

to allow the embedded error prediction technique to

determine which regions need to be further refined. The

strength (and novelty) of the current method is that it

uses effective thermal properties that are consistent with
the local grid spacing at the particular grid level being

used.

An illustration of an arbitrary (and crude) mesh is

shown in Fig. 3(a). It is noted that the nodes are not

aligned with the physical geometry. The fake (or air)

node terminology refers to nodes that are either in a

location occupied by air or outside the physical do-

main, as will be described in more detail later. Upon

obtaining a solution to the arbitrary mesh and making

an estimate of the error in the solution, the predicted

error may be used to refine the mesh in regions where

both a detailed solution is desired and the predicted

error is too large. Given the need to quickly define

regions of higher-than-acceptable error and interpolate

values for new points, a uniform mesh is highly desir-

able and was therefore selected. A mesh becomes a

parent mesh as soon as part of its volume is flagged as

needing further refinement. The areas requiring refine-

ment become child meshes. A child mesh will have in

common with its parent mesh at least every other point

in each of the three dimensions.

6.1.1. Error estimate

The meshing strategy begins by placing nodes at the

global extents of the problem geometry. A fundamental

aspect of starting with an arbitrary number of nodes to

model a problem is the use of effective (or smeared)

properties between control volumes. The nesting ap-

proach uses an estimate of the error in the steady-state

solution to define one or more regions that require

additional refinement. The knowledge that absolute er-

rors in temperature will be located within the source

region(s) where the peak temperatures occur provides

guidance in establishing boundaries for child grids. The

newly created child regions requiring further refinement

are then solved and themselves searched for internal

regions of unacceptable error levels. This zooming pro-

cess continues until a convergence criterion is met. The

convergence criterion involves a check on the error

estimate as well as a check that the grid size is actually

small enough to resolve the source (or sources). For

convenience and computational efficiency in solving the

transient portion of the problem with a factored-implicit

scheme, the child grid regions are selected to be rect-

angular (or parallelepiped in three dimensions). Starting

with an arbitrary odd number of nodes for an initial

mesh, a coarser grid made up of every other node is

created for the purpose of comparing the two grids. A

solution is obtained on each of the two grids, making it

possible to estimate the solution error simply by com-

paring the two solutions at the common nodes between

the fine and coarse grids. It is tempting to try to improve

the solution by adding the error computed from a

Richardson extrapolation to the finer solution, but this

approach is beneficial only for the first nest where the

boundary nodes do not contain errors.
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6.1.2. Define nesting templates

The error estimate is then used to define one or more

smaller regions, which, for convenience, are hereafter

referred to as child regions. Grids used to discretize these

child regions will be referred to as child grids (or child

meshes). The consecutively refined grid levels will be

referred to as nests. The grid spacing for each child mesh

is decreased and solved with fixed boundary values

around its outer surface where the boundary values are

inherited from the parent grid. After solving over the

child grid, a comparison is made between the common

points of the parent and child grids and additional child

grids are created as necessary until the solution on the

most recent (i.e., finest) child grid satisfies the user-pre-

scribed error criteria.

It is advantageous to define which locations are of

interest to the user. A typical high-performance inte-

grated circuit may have many heat sources, but the user

may be interested in highly accurate results (e.g., tem-

perature) at only one or two sources. For this reason,

only the locations of interest need to be resolved. A

parent nest may contain several regions that need fur-

ther refinement, but as long as child-nest boundaries

with error predictions satisfying an established criterion

may be constructed around a location of interest, the

error prediction at a point outside of the child nest is

deemed not important. Applying this principle to

problems with multiple sources yields independently

solvable problems when two or more distinct child nests

are created. This is also a highly attractive feature when

considering a parallel implementation of the described

methodology.

On each grid level, the nodes that define the bound-

ary for child nests form a nest template. To solve the

transient problem, the initial grid is solved in time and

the boundary values of the nest templates are saved as a

function of time. Then, using the boundary values saved

from the transient solution on its parent grid, a child

nest is solved in time. A principal and significant

advantage to this approach is that the denser grid

spacing is confined to the child nests, with each child

nest refining a smaller region of the problem than the

parent nest. A grid refinement strategy of increasing the

resolution by an even factor of 2 was chosen.

The overall solution for a particular problem is a

special union of all solutions obtained on the nested

grids, where the solution from each child grid overwrites

the corresponding solution on its parent’s grid. It is

important to note that once the overall solution is

achieved, the solutions on portions of the parent grids

that are not overwritten already satisfy the desired error

criterion.

6.1.3. Interpolating values for new boundary nodes

The concept of dividing the problem domain into

nested levels is illustrated in Fig. 3(b). An important
feature of the new method is that the grid lines need not

necessarily line up with the material interfaces. Some of

the nodes on a nest boundary are common to both the

parent and child grids. For these points, the child-node

inherits the solution value of the parent-node. The nodes

that are new, as a result of refining the mesh, require

some form of interpolation. In keeping with the spirit of

simplicity, linear interpolation (weighted by thermal

conductivity) of the steady-state values of new nodes

was investigated first. Higher-order interpolation was

also used to determine whether the overall solution time

could be reduced. The solution time would only be re-

duced if the high-order interpolation allowed the crea-

tion of smaller child nests.

In the case of three-dimensional nests, nest bound-

aries become surfaces. Values for some newly created

nodes must be interpolated based on information from

neighboring nodes as illustrated in Fig. 3(b). Values for

nodes that have common nodes on either side (repre-

sented by squares) are interpolated based on a weighted-

average of the thermal conductance values of the

common nodes (represented by circles). Node values in

the center of an area (represented by triangles) formed

by common nodes are interpolated based on a weighted-

average of the thermal conductance values of the four

common nodes. As the geometric features are resolved,

new nodes will eventually need to be created between a

common node and an air-node. This is especially true

when resolving the top surface metalization layer(s). The

temperature value of the air-node will not influence the

interpolation since the interpolation scheme is weighted

by the magnitude of the local thermal conductance and

the thermal conductance for an air-node is several or-

ders of magnitude smaller than that for a solid material.
7. Solution methodology

7.1. Factored implicit scheme

The use of a locally one-dimensional (or factored-

implicit) scheme is computationally advantageous for

the solution of transient partial differential equations

[18]. However, two important points must be addressed

to correctly apply the implicit scheme with a control

volume analysis based on an arbitrary mesh. The first

point is that the factored scheme is based on approxi-

mating derivatives solely on the basis of spatial coordi-

nates. But, the existence of multiple materials requires

the inclusion of material properties in the approxima-

tion. Hence, the factorization operators need to be de-

scribed in terms of heat fluxes rather than temperature

gradients. The second point is related to the fact that

regions of high errors coincide with regions of high

spatial gradients in the solution. The use of factoriza-

tion, however, introduces a factorization error, which
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has local maxima near material interfaces. These regions

do not coincide with regions of high spatial gradients,

but rather with regions in which the factorization spatial

operators do not commute. The additional factorization

error then limits the allowable size of the time step.

7.2. Formulation of the factored-implicit equations

A central difference approximation of the second

derivative in a spatial direction appears as

dxxDT n
i ¼ 1

Dx

ki�1=2ðDT n
i�1=2 � DT n

i Þ
Dx

�

þ
kiþ1=2ðDT n

iþ1=2 � DT n
i Þ

Dx

�
ð2Þ

where DT n
i � T nþ1

i � T n
i . The approximation of the heat

equation with a source _s appears as

1

�
�HDt

qCp
ðdxx þ dyy þ dzzÞnþ1

�
DT n

¼ Dt
qCp

ð1
h

�HÞðdxx þ dyy þ dzzÞn

þHðdxx þ dyy þ dzzÞnþ1
i
T n þ Dt

qCp
ð1
h

�HÞ_sn þH_snþ1
i

ð3Þ

where H specifies the degree of implicitness (e.g.,

H ¼ 0:5 for trapezoidal andH ¼ 1 for pure implicit). All
terms on the right-hand side are known except for the

spatial operators at the nþ 1 time level. If the thermal
conductivity is constant, then the spatial operators be-

come independent of time and the right-hand side be-

comes known and iteration across a time step is not

required.

To further simplify the equation and cast it in a form

more readily useable for multiple materials and discrete

heat locations, Eq. (3) is multiplied and divided by the

control volume of a cell ðDxDyDzÞ so that properties are
not on a per unit volume basis. As a result, new spatial

operators Lx, Ly , and Lz are introduced such that

LxDTi ¼ Gi�1=2ðDTi�1 � DTiÞ þ Giþ1=2ðDTiþ1 � DTiÞ ð4Þ

Operators Ly and Lz are defined similarly. Using the new

operators in Eq. (3) leads to the following form:

1

�
� HDt

CT
ðLx þ Ly þ LzÞnþ1

�
DT n

¼ Dt
CT

ð1
h

� HÞðLx þ Ly þ LzÞn þ HðLx þ Ly þ LzÞnþ1
i
T n

þ Dt
CT

ð1� HÞSn þ HSnþ1 ð5Þ

Eq. (5) may be factored into three one-dimensional

equations as follows:
1

�
� HDt

CT
Lx

�
DT � ¼ HDt

CT
U ð6aÞ

1

�
� HDt

CT
Ly

�
DT �� ¼ DT � ð6bÞ

1

�
� HDt

CT
Lz

�
DT n ¼ DT �� ð6cÞ

The factorization step introduces errors involving the

products of the three operators. The order of these er-

rors is the same as the temporal truncation error, which

has already been neglected. The prime advantage of

factorization is that the solution of the banded matrix

representing the three-dimensional problem reduces to

the highly efficient solution of three tridiagonal systems.

To avoid non-symmetry due to different nodal

capacitance values ðCTÞ, the solution of each of the
above equations begins with multiplying each side of the

equality by CT=ðH 	 DtÞ. By using the air-nodes to model
adiabatic boundaries, each surface actually has a fixed

(or Dirichlet) boundary condition. As the nesting pro-

gresses, each nest will have surfaces with known fixed

values at the n and nþ 1 time levels. Fixed temperature
boundary conditions at the intermediate (�) and (��)

solution levels are specified by use of the three one-

dimensional factored equations. Hence, in order to

specify DT � on a surface where DT n is known, the

equations are solved in reverse order. Namely, the

equation relating DT n and DT �� (i.e., Eq. (6c)) is used to

calculate DT �� on the fixed temperature surfaces, and

then the equation relating DT �� and DT � (i.e., Eq. (6b)) is

used to calculate DT �. After calculating DT �� and DT � on

the fixed temperature surfaces, a recursion scheme to

solve for the remaining unknown nodes in the domain

becomes straightforward.
8. Results for validation

A sample problem, with a known analytical solution,

was constructed to study the adaptive nesting concept

and provide a framework to assist in drawing conclu-

sions related to defining nest boundaries, solution

improvements, and interpolating values for the new

nodes. The sample problem consists of a two-dimen-

sional solid made of a single material and possessing one

heat source. The problem in this section was chosen to

be two-dimensional solely for the ease of displaying the

results in tabular and graphical forms. The self-adaptive

solution of a fully three-dimensional transient problem

will be demonstrated at the end of the article. The

overall problem dimensions are designated by Lx and Ly

and the heat source dimensions by Qx and Qy . The

geometry for the sample problem is illustrated in Fig.

4(a).
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The analytical solution is determined by numerically

integrating over time where the integrand is the volume-

integrated Green’s function in infinite space used to

represent the response of the heat equation at a point.

The physical boundaries and the fixed temperature sur-

face are represented through the use of images. The re-

sult of the numerical integration is the time history of

the value at the evaluated location as well as the steady-
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Fig. 4. Analytically solvable problem: (a) geometry, (b) peak

temperature, (c) actual error.
state solution [19]. Steady-state results with temperature-

dependent thermal conductivity may be obtained by the

use of Kirchhoff’s transform [20], but an analytical

solution to the transient portion of the problem with

temperature-dependent properties is not available.

Using superposition, the transient response under linear

(constant thermal conductivity) conditions is used to

predict the response to a pulsed condition. The use of an

analytical problem with a known solution makes it

possible to assess the error estimation technique as well

as demonstrate convergence.

8.1. 2D comparisons

In this section, the numerical approach is validated

by comparing the numerical results with the analytical

solutions for the cases of steady-state, transient, and

pulsed operation.

8.1.1. Space

A heat input of 1 unit (results in this section are in

dimensionless form) was placed into the heat source with

dimensions Qx ¼ 0:004Lx and Qy ¼ 0:003Ly . The ana-

lytical solution for the temperature at the top of the heat

source is 121.9. A coarse grid solution (5 · 5 nodes)
predicted a heat source value of 68.9 while a once finer

grid solution (9 · 9 nodes) predicted a heat source tem-
perature of 79.7. The estimated error at the source node

(13.55% by a comparison between fine and coarse grid

solutions) is below the actual error in the fine grid

solution (34.7%) but the source node result is correctly

identified as unsatisfactory.

Table 1 lists the actual error in the fine grid solution,

indicating that the fine grid solution is within 2% of the

exact answer for all of the nodes except the source node.

The reason for the larger discrepancy at the source node

is that the fine grid spacing is 0.125Ly while the smallest

heat source spacing is 0.003Ly . Hence, the fine grid mesh

is not small enough to resolve the heat source. The error

estimates in Table 1 correctly identify the insufficiently

resolved region as being centered on the source node.

The fact the errors decay away from the source node

makes it possible to use a search routine that begins at

source node(s) and progresses outwardly until the local

error has decreased below the threshold established by

the user. Hence, it is not necessary to waste time

searching the entire computational domain.

Given a field of predicted error, a region (child nest)

may be created that contains the nodes that have pre-

dicted error values exceeding a user-specified criterion.

The location of the child boundary must, at a minimum,

be such that the predicted errors on the child boundary

are less than the specified criterion. However, it is likely

that the location of the child boundary should be ex-

tended farther away from the region of predicted error.

This extension is designated as node overlap. Increasing



Table 1

Actual percentage error in the fine grid solution

Numbers in ( ) refer to fine grid node coordinates

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) )0.59 )0.72 )1.15 )1.49 34.67 )1.49 )1.15 )0.72 )0.59
(2) )0.32 )0.26 0.12 1.08 )1.48 1.08 0.12 )0.26 )0.32
(3) 0.03 0.11 0.30 0.20 )1.14 0.20 0.30 0.11 0.03

(4) 0.20 0.23 0.19 )0.15 )0.67 )0.15 0.19 0.23 0.20

(5) 0.25 0.20 0.12 )0.16 )0.43 )0.16 0.12 0.20 0.25

(6) 0.22 0.16 0.05 )0.16 )0.31 )0.16 0.05 0.16 0.22

(7) 0.16 0.16 0.03 )0.13 )0.24 )0.13 0.03 0.16 0.16

(8) 0.16 0.09 0.02 )0.01 )0.16 )0.01 0.02 0.09 0.16

(9) 0 0 0 0 0 0 0 0 0
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the node overlap will increase the computational cost

because all the child meshes will be larger.

Six model evaluations for the sample problem were

made to demonstrate the benefits of nesting. The results

presented in Table 2 indicate that the same answer may

be obtained (to within a specified tolerance) by starting

with a coarse initial grid and nesting as compared to a

solution that uses a single and much finer grid resolu-

tion. In the cases presented, the requested accuracy was

fixed at 1%, with each case doubling the resolution of the

previous one. The first column in Table 2 lists the grid

spacing, and the numbers in brackets refer to the nest

levels. The finest grid spacing of 0.000977 was suffi-

ciently small for all six cases, and at this resolution, all

six cases met the accuracy criteria. The last row in the

table shows the total number of nodes for all the nests in

each case. Case 1 used about 100 times fewer nodes than

case 6 and still met the accuracy goal. Since the com-

putational cost is a strong function of the number of

nodes used, case 1 is clearly preferable. The main

observations from these simulations are that this prob-

lem may be effectively solved by a nesting approach and

that the total number of nodes required to achieve an
Table 2

Actual percentage error versus grid size and nest level

Numbers in [ ] are nest levels for the particular case

Grid spacing ratio

ðDX=LxÞ
Case 1

(9· 9)
Case 2

(17 · 17)
Case 3

(33 · 3

0.125 [1] 34.7

0.0625 [2] 25.7 [1] 25.7

0.03125 [3] 16.7 [2] 16.7 [1] 16.

0.015625 [4] 7.74 [3] 7.71 [2] 7.6

0.007813 [5] 1.24 [4] 1.27 [3] 1.3

0.003906 [6] 2.75 [5] 2.78 [4] 2.8

0.001953 [7] 0.62 [6] 0.59 [5] 0.5

0.000977 [8] 0.46 [7] 0.43 [6] 0.3

Total no. of nodes 674 695 1432
accurate solution is significantly smaller with the nesting

approach.

8.1.2. Validation of error estimation

Solving the same sample problem geometry with a

heat source that is about two orders of magnitude

smaller further illustrates the benefits of self-adaptive

nesting. The heat source dimensions were decreased to

Qx ¼ 0:00004Lx and Qy ¼ 0:00002Ly and the requested

spatial error criterion was set at 1%. Thus, in this case,

two criteria must be met for completion. The first is that

the final grid size must be less than at least one-half the

source size and the second is that the requested error

criterion must be satisfied. Table 3 lists the grid spacing

compared to the heat source size in the second column

and the error estimate in the fourth column. Both cri-

teria are met in Nest #13 with the grid size to heat

source ratio of 0.2545 and the predicted error of 0.133%.

The actual error in the solution is listed in the fifth

column and a comparison to the predicted error in the

fourth column shows that the initial nests significantly

underestimate the error, but the last nest (Nest #13)

actually meets the 1% requirement. The last column lists
3)

Case 4

(65· 65)
Case 5

(129· 129)
Case 6

(257· 257)

7

5 [1] 7.58

3 [2] 1.40 [1] 1.47

4 [3] 2.91 [2] 2.98 [1] 3.0

1 [4] 0.44 [3] 0.36 [2] 0.31

5 [5] 0.28 [4] 0.20 [3] 0.07

4505 16,858 66,215



Table 3

Nesting approach with a small source volume

Nest level (Grid spacing)/(source size)

ðDx=QxÞ
Fraction of

original area

Error estimate at

source (%)

Actual error at

source (%)

Actual error on

nest boundary (%)

#1 1040 1.0 11.3 51.2 0.0591

#2 520 0.0139 10.1 45.7 0.724

#3 260.5 0.00347 9.2 40.2 0.507

#4 130 0.868· 10�3 8.42 34.7 0.549

#5 65 0.217· 10�3 7.77 29.2 0.585

#6 32.55 0.543· 10�4 7.21 23.7 0.614

#7 16.3 0.136· 10�4 6.72 18.2 0.637

#8 8.15 0.339· 10�5 6.3 12.7 0.655

#9 4.07 0.848· 10�6 5.93 7.16 0.671

#10 2.035 0.212· 10�6 5.59 1.66 0.684

#11 1.015 0.530· 10�7 5.3 )3.85 0.696

#12 0.51 0.132· 10�7 4.68 0.798 0.706

#13 0.2545 0.331· 10�8 0.133 0.666 0.758
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the actual peak error on the child boundary created

from the parent grid (Nest #1 creates a boundary for

Nest #2 that has a peak error of 0.0591%). The results in

this last column indicate that the child boundaries are

actually created in regions with acceptable solution

error. The second column in Table 3 shows the

decreasing ratio of nest area to total problem area. The

significance of this ratio is a demonstration that the very

fine grid resolution is confined to a small portion of the

problem geometry. By the time the solution has pro-

gressed to Nest #13, the area of the problem involved in

the calculations has decreased by seven orders of mag-

nitude. In addition, note that the actual maximum error

on the boundary for nest #13 (0.758) is less than the

specified 1%.

8.1.3. Time

The sample problem geometry may also be used to

demonstrate that the self-adaptive nesting approach af-

fords efficient simulation of the transient equation. Prior

to discussing time step selection and transient accuracy,

it is desirable to demonstrate that the transient solution

for each nest is actually converging to the true solution.

After gaining confidence that the technique works, issues

related to accuracy and speed will be discussed.

The sample problem was solved for the transient re-

sponse to a step change in dissipated power, from an

initially uniform temperature condition. The time

interval was set at 200 ls. The initial time step for each
nest level was set equal to five times the time step limit

determined from a von Neumann stability analysis for

an Euler-explicit method. Subsequent time steps were

controlled by comparing the results at each time step

with those obtained by taking two equivalent half steps,

and insisting that the source node temperatures from the

two solutions agree to within 1%. The temperature at the

peak node in each nest is shown in Fig. 4(b). The curves

show that Nests #1 and #2 under-predict the source
temperature while the predictions from Nests #3

through #6 are closer to the exact answer. Fig. 4(c)

shows the actual error present as a function of time for

each nest solution and also illustrates that by Nest #6,

the agreement between the predicted and analytical an-

swers has reached the order of 1%. In fact, the maximum

error at the source node in Nest #6 is approximately

1.6% for the first time step and decreases to 0.6% as the

solution nears a steady-state answer at 200 ls. The dif-
ference between the predicted and exact answers is

0.02 �C at the first time step and 0.3 �C at 200 ls.

8.1.4. Validation of time step selection

Initial simulations during the development of the

technique used a two-time-step method to control the

local solution error. The two-time-step method makes

use of a comparison between a predicted solution ðT2SÞ
based on two steps of Dt=2 and a predicted solution ðT1SÞ
based on Dt. The local accuracy with this approach was
defined by ðT2S � T1SÞ=T2S at the particular time level.
While the two-step method of controlling the temporal

errors works well from an accuracy standpoint, an

examination of a one-step method was made to see if the

computational time could be reduced. Shampine and

Witt [21] reported that limiting the change in the func-

tion value is both a reasonable and efficient method of

selecting the time steps. The advantage of this approach

is that a confirmation run to compare solutions is not

needed. Limiting the temperature change was found to

be more computationally efficient than performing a

comparison evaluation, but the ability to compute a

temporal error estimate was lost.

8.2. Issues related to computational speed

During the development of the adaptive transient

solution technique, several discoveries were made

to support the goal of minimizing solution time



Table 4

Computational Time Comparison

Simulated

condition

Conventional

method (min)

Nesting

method (min)

Speed

increase

Steady-state;

kðT Þ
34 2.8 12

Pulsed; 1

cycle, kðT Þ
8400 41 205

Pulsed; 4

cycles, kðT Þ
– 127 –
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requirements. Choices were required in interpolation

schemes, grid refinement and overlap, and iteration with

variable thermal properties. As a general rule, the sim-

plest and most straightforward method proved to be the

best choice. The nesting scheme allows consistency be-

tween grid resolution and heat generation by smearing

the heat dissipation into the nearest nodes. As a result,

the initial (coarse) grids approximate the source distri-

bution over a larger volume than in the later refined

grids. Since the predicted values at the nodes repre-

senting the heat source will be found to be in error in the

initial nests, the smeared treatment of the heat source is

both acceptable and appropriate.

The first observation was that linear interpolation for

the values of nodes on the boundaries was sufficient.

This statement applies to both the steady-state and lin-

ear cases. While higher-order interpolation is possible,

no additional accuracy is realized since the boundaries

of the child nest have already been specified in a region

with acceptable accuracy.

Since the problems of interest are generally three-

dimensional, significant reductions in the computational

cost may be achieved by selectively refining the grid in

only one or two of the spatial dimensions. A reasonable

indicator of the dimension most needing refinement is

the dimension with the largest gradient of the predicted

solution error. As a result, computational costs may be

reduced by refining the grid spacing in directions con-

sistent with the smaller dimensions while maintaining a

constant grid spacing in the long dimension.

In the case of temperature-dependent thermal con-

ductivity, iteration within a time step is required and one

iteration within the time step was found to be sufficient.

Additional iterations do not increase the accuracy en-

ough to justify the additional computational cost.
9. Motivating example––revisited

The motivating three-dimensional example problem

in Section 3 is now solved with the self-adaptive tech-

nique to illustrate the significant gains in computational

efficiency. The comparison values are given in Table 4,

which lists both the raw data and the speed increase

from the conventional method to the adaptive method.

As noted in Section 3, the steady-state solution required

32 min of CPU and the transient solution for a single

pulse required over 8400 min of CPU time. The self-

adaptive method required 4 min for a steady-state

simulation and 41 min to solve one pulse cycle. The

adaptive method reduced the simulation time by a factor

of over 200. In addition, a sequence of four pulses was

solved with the adaptive technique with a total simula-

tion time of 127 min. The raw CPU solution times were

recorded on a 275 MHz UltraSparc Sun workstation

with full compiler optimization. The agreement between
the steady-state results from the two simulations was

within 3%.

An isometric view of a portion of the model from the

new technique is illustrated in Fig. 5(a). This model used

a steady-state accuracy criterion of 3% and contained

160,000 nodes in nine nests. The cross-sectional views

illustrate the strong thermal gradients around the mul-

tiple gate fingers. The power density for this simulation

was 0.046 W per finger, which corresponds to a FET

dissipated power density of 460 mW/mm of FET

periphery. An additional evaluation with a steady-state

accuracy criterion of 1% resulted in less than a 1%

change in the result (54.6 �C temperature rise compared
to 54.4 �C) but required 380,000 nodes. The transient
simulations used the nest templates defined by the 3%

steady-state criterion. A time history plot for the four

pulse cycles is shown in Fig. 5(b). As discussed, the

agreement between the conventional and self-adaptive

techniques is evident for the first pulse cycle but the self-

adaptive approach allows the simulation of multiple

pulse cycles in a reasonable time.

It should be noted that while the specific comparison

just described relates the self-adaptive technique to a

conventional finite difference (or finite volume) solution

scheme, a comparison to other conventional modeling

schemes (boundary element, finite element, etc.) would

be expected to have similar results. The self-adaptive

technique is essentially a solution methodology in which

a discrete mathematical representation of a physical

problem can be solved over successively smaller com-

putational domains, whose initial and boundary condi-

tions are passed from the larger subdomains (with

coarser grids) to the smaller subdomains (with finer

grids). An error in the computed variable (e.g., tem-

perature) is calculated at common grid points between

the parent and child subdomains, making it possible to

identify any computational region within the larger

subdomain where the error is higher than specified. The

method then sheds those regions where the solution has

been determined within an acceptable error and focuses

the entire available computational power on the smaller

subdomain(s) where the error is still unacceptable. The

reader is reminded that significant portions of the phys-

ical problem are described adequately within the first or



Fig. 5. Full three-dimensional thermal model: (a) steady-state contours (see color version at http://engr.smu.edu/setsl/ijhmt), (b)

comparison of transient conventional and adaptive solutions.
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second mesh and thus do not need to be recalculated in

the framework of this self-adaptive approach. The two

key and differentiating aspects of this approach then are

that (i) the physics, and not the geometry, drive the grid

refinement, and (ii) there is no need to solve again over

regions where the solution has already reached the de-

sired accuracy level. A tremendous computational

advantage ensues by thus forcing the mesh refinement to

be driven by the physics of the problem and to be con-
fined to the region of interest, especially in the temporal

domain. This process is entirely independent of which

discretization scheme is used to approximate the non-

linear, partial differential equations being solved. Thus,

the efficiency and effectiveness of the self-adaptive

methodology should be the same for any applicable

method. Indeed, the authors’ unreported experience

with a boundary element method early on in the inves-

tigation confirmed these advantages.
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10. Concluding remarks

A novel self-adaptive nested grid method has been

developed and presented. The method is capable of

accurately and efficiently solving thermal transient

problems that are characterized by a large range of

spatial and temporal scales. The method has also been

demonstrated to be significantly faster than conven-

tional thermal modeling techniques. The developed ap-

proach is adaptive, requiring that the user specify only

the physical geometry, boundary conditions, and an

accuracy criterion. Integration of thermal design into the

electrical design process is now for the first time possible

due to the dramatic reduction in computational time

requirements. The results of an associated experimental

validation effort are contained in [19,22,23].
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